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Abstract—The objective of our project is to understand how
we can use machine learning algorithms to train dual AI agents
to play a game of table tennis. Through this process we develop
both dual-agent and single-agent game, exploring different RL
models. Our efforts delivers very capable table-tennis agents that
can serve and return similar to a human player. Our models have
produced strong performance baselines that should encourage
future explorations.

Index Terms—Table Tennis, Game Learning, RL

I. INTRODUCTION

Table Tennis, known as Ping-Pong, is a popular sport in
which two or four players hit a lightweight ball on a hard table
divided by a net. There has been many attempts to use robots
to play table tennis in real-world. But many of those research
focus more on perception, such as tracing the trajectories of
the ball and predicting its position, transferring the learned
agents in simulation environment to real-world setting. They
could not compete against human players at any level, either
dynamically or strategically. On the other hand, there are also
plenty of table tennis games available on virtual environment,
like PC, console and mobile devices. However, they are mostly
platforms for two human players play against each other, while
the provided AI are mostly rule-based. Our table tennis agents
aim to achieve high performance under virtual environment, so
that learning the strategies are more important to us compared
with many prior works on table tennis robots. As a result,
we want our environment to be not only neat and clean, but
also to consider physical properties like spinning and collision
coefficients.

II. RELATED WORKS

A. Reinforcement Learning

Reinforcement learning is a type of machine learning that
uses AI systems to follow a policy in order to learn an
objective and there by maximize the cumulative reward [1].
Here the AI system starts learning step by step by trial and
error approach. For every correct action it performs it is

given a reward and for any subsequent mistake it receives a
penalty. Using this feedback mechanism of reward and penalty
reinforcement learning learns well in the environment around
it [2]. With the development of deep learning, neural networks
empower RL with unprecedented abilities in field of Go [?],
Atari [4], StarCraft [5], Robotics [6]. A major family of RL
algorithms are policy optimization, where they represent a
policy as πθ(a‖s). The parameters θ are optimized by gradient
decent of objectives, often involving learning value functions
at the same time. Some representative algorithms are actor-
critic algorithm [?], which is temporal difference version of
policy gradient, A2C [8], which directly performs gradient
ascent in asynchronous manner, and PPO [9], which indirectly
maximize a surrogate objective function. Another Family is
based no action value function, called Q-Learning, first raised
by Watkins in 1992 [10].

B. Table Tennis Robots

Attempts to use robots to play table tennis could be traced
back to the 80s. Since Anderson [11] built a real-world vision
system which subjectively evaluates and improves its motion
plan as the data arrives, many table tennis robot systems were
built [12], [13], [14], [15], [16], [17].

As the development of deep learning, especially reinforce-
ment learning, training a robot to play table tennis in real world
has been made possible. Lately, Wenbo et al. [18] demon-
strate a model-free approach mixed of evolutionary search
and CNN-based policy architectures. Jonas et al. [19] shows
a modified DDPG [20] could increase sample efficiency in
table tennis. Büchler et al., combines step-based reinforcement
learning with pneumatic artificial muscles, and achieved great
performance using a hybrid sim and real training process. For
further learning, Matsushima summarizes the many learning
approaches in robotic table tennis [21].



C. multi-Agent learning

Generally, in gaming, it often involves the participation of
more than one single agent, which fall into the real of multi-
agent RL(MARL). As the previous papers mostly try to solve
table-tennis training a single agent, we want to capture the
competitive nature of a sport, thus training a pair of agent
against each other. MARL algorithms are widely known to
be sample-inefficient and millions of interactions are needed.
For the game of table tennis, the interaction between the agent
and the environment is relatively simple compared with games
like starcraft. Hence, we would focus more on the model-free
setting, where the policies are learned without direct access to
the environment.

Compared with single-agent RL, MARL suffers from sev-
eral challenges. As summarized by [22], MARL does not have
unique learning gols and whether convergence of equilibrium
point is the alpha performance criterion for MARL algorithm
analysis is controversial. Some researchers found value-based
MARL algorithms fail to converge to stationary Nash equi-
librium point for general-sum Markov games [23]. Another
major issue is the non-stationary setting as multiple agents
could simultaneously interact with the environment and each
other. This could bring challenge to value estimation as well
as policy optimization during training. Scalability is a issue
coming along with non-stationary, as the joint action space is
exponentially increasing. Even in a dual agent setting as table
tennis, the sample efficiency would still be a major bottleneck.

MARL has many information structures(who knows what
at the training and execution) [22]. For the dual agent setting
of table tennis, the straight forward way is treat other agent as
part of the environment, which is called Independent Learn-
ing(IL). But IL face the problem of non-stationary dynamic,
which harms the performance of policies. Some work try to
stabilize the learning process [24], [25]. Others try to build
communication protocols between agents [26], [27]. Another
major MARL learning diagram is Centralized Training and
Decentralized Execution (CTDE). One Representative CTDE
method is MADDPG [28], a multi-agent version actor-critic.
Each agent maintains its own critic Qi, which estimates
the joint value function and uses the critic to update its
decentralized policy.

MARL consists of three groups, fully cooperative, fully
competitive and mixed of two. Though Table tennis is consid-
ered to be competitive game, we would also try some mixed
methods since table-tennis is not a typical zero-sum game,
where the reward for one player is exactly the loss of the
other.

III. DATA AND ENVIRONMENTS

A major part of this project is building an environment
that is interactive, visual attractive, and efficient for training
artificial agents.

A. Development Tools

To develop the environment, we use the foll lowing tools.

1) Unity 3D: 2020.3.20 Unity is a cross-platform game
engine developed by Unity Technologies. The game
engine can be used to develop interactive 3D, 2D, as
well as interactive simulations and other experiences [?].
Unity version 2020.3.20 is utilized for the environment
setup.

2) Unity Machine Learning Agents Toolkit
The Unity Machine Learning Agents Toolkit (ML-
Agents) [29] is an open-source project that enables
games and simulations to serve as environments for
training intelligent agents. They provide state-of-the-art
algorithms which can be used to train intelligent agents
to play different 3D and 2D games. The ML agents
package provides an option to convert a Unity scene
into a learning environment where character behaviors
can be trained using machine learning algorithms.

3) Pytorch PyTorch is an open-source machine learning
library based on the Torch library, used for applications
such as computer vision and natural language process-
ing.

4) Python The most popular language for machine learning
research.

5) Tensorboard It is a Tensorflow visualization toolkit that
provides visualization and tools for machine learning
experimentation. It helps to track and visualizing metrics
like loss and accuracy. Tensorflow.dev provides an easy
way to share ML experimentation results.

B. Environment Functionality

Our project aimed to create an environment and ML agents,
to enable them to play a game of table tennis. For this
purpose, we found out that Unity provides a comprehensive
environment where game objects can be created and modeled
as per user requirements. Also, game objects can be used
as ML agents and can be trained using Proximal Policy
Optimization and Soft Actor-Critic model provided by Unity.
Therefor, we selected the Unity platform as the environment.

Our environment contains a Table Tennis bat with the ability
to assign different unity materials to different sections of the
bat for customizability. The sections include Bat forehand face,
Bat backhand face, Bat center, and the Bat handle. The second
model in this pack is the table tennis table which can have
different unity materials assigned to it for customizability. The
sections include Tabletop, Table Legs, Net frame.

1) Vector Observations: From the environment, we are
collecting the positions of bat A, bat B, and the ball.
Also, we are collecting the velocity of bat A, bat
B, and the ball. We have used these observations to
train the model using different Reinforcement learning
algorithms.

2) Actions: We have designed the environment in a way
where the bats can move along X and Y axes and can
rotate along X axes. Our goal is also to use the Z axes in
the following weeks. The bats can also be moved using
the ’right’, ’left’ keys.



3) Reward Policy: We have designed our reward policy in
such a way that if a player commits a mistake or makes
a foul move the opponent player gets the reward for it.
The following are the foul moves implemented for our
project:

• Player hitting the ball to the net.
• Player hitting the ball over the boundary.
• Ball bouncing more than once on the same side of

the court.

For implementing the reward policy we are keeping track
of the parameters given below:

• Last Hit Agent : The agent who hit the ball previ-
ously before coming to the current player.

• Last Collided With : This keeps track of the last
surface the ball collided with. Here the surface refers
to the court of player A, court of player B, Net, etc.

• Next Agent Turn: This keeps the track of the next
agent who has to hit the ball to continue the game.

Using the above parameters we are rewarding the agents.

The following figure shows the environment we have built
for now.

Fig. 1: Table Tennis Environment

Fig. 2: System Overview

C. Software Overview

The final software we build consists of the following parts.
1) Game Controller Class: This is the main controller class

that is interlinked to all other classes. It has the following
functionalities:
• agentScores(): This method is used for rewarding

the agents.
• episodeReset(): It is used to reset the episode for

every foul move.
• matchReset(): It is used to reset the match.
• ballHitsAgent(), ballHitsFloor(), ballHitsBound-

ary(), agentHitsNet(), ballHitReward(): These
methods are used to handle the reward for the
agent depending on the foul moves described for
the game.

Fig. 3: Software Workflow Diagram

2) Ball Class: This class refers to the functionalities used
for the ball.
• onCollisionEnter(): This function handles the dif-

ferent nuances when the ball collides with different
surfaces. For example, when the ball collides with
bat A we are checking the parameter status of the
lastHitAgent, lastCollidedWith and we are reward-
ing the agent as per the rules of table tennis.

• reset(),resetParameter(): This functionality handles
resetting the ball positions for every episode.

3) TTAgent Class: This class involves all the functionalities
required for the agent.
• CollectObservations(): It is used for collecting the

vector observations for the bats and the ball. The
velocity observations of the bats and the ball are
also collected.



• Heuristic(): This functionality is used to assign the
movement to the bat along ’x’ and ’y’ axis. The bat
can be moved along the horizontal axis using the
right and left keys. It can be moved in the vertical
direction using the upward and downward keys. The
racket can be made to jump using the ’X’ key.

• OnActionReceived: This executes the actions by
moving the game objects in the vector space.

• resetRacket: It is used to reset the racket position.
• resetScore: It is used to reset the score for the

agents.
4) Score Controller Class

IV. METHODS

A. Preliminaries

The Table Tennis Game could be described as a Markov
Process, and is a Markov Game [30].

Markov Decision Process(MDP). An MDP is defined as

< S,A, T,R, ρ, λ >

where S a set of states, A a set of actions, T : S×A→ P (S)
a stochastic transition function, R : S × A → R a reward
function, λ ∈ [0, 1) a discount factor. The agent(table tennis
player) interacts with the ball by performingits policy π : S →
P (A). The agents learn this policy to maximize the expected
cumulative discounted reward:

J(π) = Eρ,π,T

∞∑
t=0

rtλ
t

where rt = R(st, at), s0 ∼ ρ0(s0), at ∼ π(st), st+1 ∼
T (|̇st, at)

Markov Game(MG). An MG is an extension of MDP and
is defined as

< S,N, {Ai}Ni=1, {Ri}Ni=1, {Oi}Ni=1, ρ, λ, Z >

where the action sets now contain N agents, namely,
A1 · · ·AN , state transition function T : S × A1 · · ·AN →
P (S), reward function R : S × A1 · · ·AN → R. For
partially observable Markov games, each agent i receives local
observation oi : Z(S, i)→ Oi and interacts with environment
with its policy πi : Oi → P (Ai). The expected cumulative
discount reward now turns into

J i(πi) = Eρ,π1,··· ,πN ,T

∞∑
t=0

ritλ
t

where rit = Ri(st, a
1
t , · · · , aNt ). we will discuss methods

like PPO, SAC and DQN and how we train our table tennis
agent using these RL algorithms under Markov Game setting.

B. Models

1) Proximal Policy Optimization(PPO): Proximal Policy
Optimization(PPO) is an on-policy based reinforcement learn-
ing algorithm. This algorithm was introduced by the OpenAI
team in the year 2017 [9] and quickly became one of the most
popular RL methods surpassing the Deep-Q learning method.

PPO is scalable, data efficient, and successful on a variety of
problems without hyper-parameter tuning.

PPO is an algorithm that attains the data efficiency and reli-
able performance of trust region policy optimization (TRPO),
while using only first-order optimization. It involves collecting
a small batch of experiences interacting with the environment
and using that batch to update its decision-making policy.
Once the policy is updated with this batch, the experiences
are thrown away and a newer batch is collected with the
newly updated policy. This is the reason it is an “on-policy
learning” approach where the experience samples collected are
only useful for updating the current policy once.

PPO improves stability of the learning by mainly 2 tech-
niques:
• Clipped Surrogate Objective: The Clipped Surrogate Ob-

jective is a drop-in replacement for the policy gradient
objective that is designed to improve training stability by
limiting the change you make to your policy at each step.

• Multiple epochs for policy updating : Unlike vanilla
policy gradient methods, and because of the Clipped
Surrogate Objective function, PPO allows user to run
multiple epochs of gradient ascent on your samples
without causing destructively large policy updates. This
allows to squeeze more out of your data and reduce
sample inefficiency.

Fig. 4: Proximal Policy Optimization Algorithm [9]

2) Soft Actor Critic(SAC): Soft Actor Critic(SAC) is an off-
policy model-free reinforcement learning algorithm. This RL
algorithm was developed jointly by UC Berkely and Google
and was introduced in the year 2018 [31]. It is considered
one of the most efficient algorithm to be used in real-world
robotics.

The biggest feature of SAC is that it uses a modified RL
objective function. Instead of only seeking to maximize the
lifetime rewards, SAC seeks to also maximize the entropy of
the policy. A high entropy in our policy explicitly encourages
exploration, encourages the policy to assign equal probabilities
to actions that have same or nearly equal Q-values, and also
ensures that it does not collapse into repeatedly selecting
a particular action that could exploit some inconsistency in
the approximated Q function. SAC overcomes the brittleness
problem by encouraging the policy network to explore and not
assign a very high probability to any one part of the range of
actions.

3) DQN: DQN is an off-policy, value-based, model-free RL
algorithm. This algorithm was introduced by DeepMind Tech-
nologies in the year 2013 [32]. The algorithm was modified
in the 2015.



Fig. 5: Soft Actor-Critic Algorithm [25]

A Deep Q-Network, based on Q-learning framework, uses
a deep network to approximate the state-value pair. In some
games, it takes in several frames of the game as input and
returns state values for each action as outputs. DQN comes up
with Experience Replay, an idea to store the episode steps in
memory of off-policy learning, where samples are drawn from
the replay memory at random. Having a replay memory makes
the problem more like a supervised learning problem. Another
difference to normal Q-learning is that Q-Network periodically
updated with the latest weights and optimized towards a frozen
target network in every steps. The former helps training to be
more stable since it prevents short-term oscillations from a
moving target. The later deals with autocorrelation that would
occur from on-line learning,

DQN overcomes unstable learning by mainly 2 techniques.
• Experience Replay
• Target Network

Fig. 6: DQN Algorithm [32]

4) MA-POCA: MultiAgent POsthumous Credit Assignment
[29] is a novel multi-agent trainer that trains a centralized
critic, a neural network that acts as a ”coach” for a whole
group of agents. Rewards can be given to the team as a
whole, and the agents will learn the best ways to contribute
to achieving that reward. Agents can also be given rewards
individually, and the team will work together to help the
individual achieve those goals.

Additionally in MA-POCA agents can be added or removed
from the group during an episode, such as when agents spawn
or die in a game. If agents are removed mid-episode, they
will still learn whether their actions contributed to the team
winning later. This enables the agents to take group-beneficial
actions even if it results in them being removed from the game.
MA-POCA can also be combined with self-play to train teams
of agents to play against each other

5) DDPG: Deep Deterministic Policy Gradient (DDPG) is
an off-policy algorithm which is a version of Q-learning for
continuous action space. It combines Q-learning and gradient
descent in that it uses the Bellman equation to learn the Q-
function, and uses the Q-function to learn the policy

Given optimal action-value function Q∗(s, a), then in any
given state, the optimal action a∗(s) can be found by solving

a∗(s) = argmax
a

Q∗(s, a)

DDPG interleaves learning an approximator to Q∗(s, a)
with learning an approximator to a∗(s)

6) Curriculum Learning: Curriculum learning is a learning
agenda to progressively learn from simple to hard circum-
stances. The idea to imitate human’s learning progress under
curriculum could be traced back to as early as 1993, when
Jeffery Elman proposed a strategy to begin trainig neural
networks with a restricted set of simple data and graduate
expand to complex training samples.

For our table tennis game we make the following curriculum
for the reward

1) Training the agent with initially high reward values set
for hitting the ball regardless of foul moves and low
reward values for scoring against opponent.

2) As the agent progresses through lessons, reward for
hitting the ball is reduced and reward for scoring against
opponent is increased

V. RESULTS AND ANALYSIS

A. PPO

The PPO training is carried out by setting the behavior type
of agents to ”Default” in Unity so that no external/human
interaction is required to play the game. We used the mlagents-
learn package to execute the configuration file which contains
the hyper parameters specific to each model. Each time a
configuration file is called a new model is trained and gets
saved in the local system. Later, the trained model can be
embedded into Unity as the model type in order to observe
the learning that the agents have obtained.

We have tuned the model by using a variety of hyper
parameter combination in our configuration file while keeping
our batch size as 2048, hidden units in each layer as 256 and
initial ELO as 1200. The table [I] contains the hyper parameter
combinations.



Buffer Size Lr Epochs Schedule Layers Steps Final ELO
2048000 0.0003 3 constant 3 370000 1202
2048000 0.0003 3 constant 2 1.6M 1191
2048000 0.001 3 constant 2 1.93M 1208
20480 0.03 3 constant 2 730000 1203
20480 0.01 3 constant 2 2.23M 1190
20480 0.01 3 constant 3 2.19M 1170
20480 0.01 500 linear 3 20000 1193
20480 0.01 10 linear 3 1.2M 1189
20480 0.01 1000 linear 3 100000 1195
20480 0.01 100 linear 3 1M 1205

TABLE I: PPO Hyper parameter Combination

B. SAC

The training is carried out by setting the behavior type
of agents to ”Default” in Unity so that no external/human
interaction is required to play the game. We used the mlagents-
learn package to execute the configuration file which contains
the hyper parameters specific to each model. Each time a
configuration file is called a new model is trained and gets
saved in the local system. Later, the trained model can be
embedded into Unity as the model type in order to observe
the learning that the agents have obtained.

We have tuned the model by using a variety of hyper
parameter combination in our configuration file while keeping
our hidden units in each layer as 256, learning rate schedule
as ’constant’ and initial ELO as 1200. The table [II] contains
the hyper parameter combinations.

Buffer size Batch size Learn Rate init steps Bounce Layer Steps Final ELO
500000 128 0.0003 0 1 2 8M 2352
50000 128 0.01 0 1 2 2M 1272
500000 128 0.003 0 1 2 3.6M 1540

1000000 1024 0.0003 1000 1 2 4M 2002
500000 512 0.0003 1000 1 2 3M 1953
500000 512 0.0003 1000 1 2 10M 2130

1000000 1024 0.0003 1000 1 3 3.9M 1915
1000000 1024 0.0003 1000 1 3 0.7M 1748
500000 512 0.003 0 0.9 3 1.98M 2005
500000 512 0.0003 0 0.9 2 6.8M 1940

TABLE II: SAC Hyper parameter Combination

C. MA-POCA

We have tuned the model by using a variety of hyper
parameter combination in our configuration file while keeping
our hidden units in each layer as 256, learning rate schedule
as ’constant’ and initial ELO as 1200. The table [III] contains
the hyper parameter combinations.

Buffer size Batch Lr Hidden Layers Steps Final ELO
20480 2048 0.0003 512 2 1000(A)/4000(B) 1212
20480 2048 0.003 512 2 1000(A)/4000(B) 1270

TABLE III: MA-POCA Hyper parameter Combination

D. Curriculum Learning

Training:
1) We train the agent with initial high reward values

assigned for hitting the ball, regardless of whether the

move made was a foul, and initial low reward values as-
signed for scoring against the opponent. But as the agent
continues to move through lessons, we progressively
reduce the reward value assigned for hitting the ball
and increase the reward value set for scoring against the
opponent in order to teach the agent to play legal moves
with a higher scoring probability. We used progress,
represented by the ratio of current steps to maximum
steps, as the measure to shift through lessons in our
curricula.

2) We train the agent by giving it an easy level of initial
play, with limited movement required to hit the ball,
by setting the initial bat size to a large value. We pro-
gressively increase the difficulty through the sequence
of lessons, by reducing the bat size (in the z and y axis
in Unity) until it reaches the pre-established normal bat
size value in the final lesson. This is done in order to
teach the agent to increase its range of motion in order to
hit the ball. We used progress, represented by the ratio
of current steps to maximum steps, as the measure to
shift through lessons in our curricula.

E. Single Agent Setting

From the sections before, we have seen that the applying RL
methods in a competitive dual agent setting could help agents
to learn play the table tennis game. However, we found that
some of the methods like PPO could not guide the agents to
play the game well. The dual agent setup also restricted us to
training the agents with the models provided by unity as we
wanted to explore how the agents perform when trained with
other different models from external frameworks like gym-
library.

We are also curious if we could train a single agent, who
only serves the purpose of hitting the ball on to the other side
of the court abiding Table Tennis Rules, could learn to play
the table tennis game. So we consider the following scenarios:

Environment

1) Agent: The agent has the same functionalities built-in
as in the dual agent setup, but the reward policies are
now only set based on how well the agent is able to hit
the ball and abide by the table tennis rules.

2) Serve Bot:A serving bot that serves the ball to the agent
with different levels of difficulty depending on the mode
it is set to.

3) Reward Policy:
a) Positive Rewards:

i) A positive reward is added to the agent when-
ever it is observed that the ball has collided
with the agent through a trigger event

ii) A positive reward is added to the agent when-
ever it is able to hit the ball across the net, by
placing an invisible object on top of the net to
allow us to observe the event whenever the ball
passes through this object.



iii) A positive reward when the agent successfully
hits the ball not only across the net but also
onto the opponent’s table

b) Penalties:

i) when it misses the ball
ii) when hits the ball twice on its turn

iii) when hits the ball twice on its own side of the
table

iv) when hits the ball directly onto any boundary
or net.

Initial Conditions

a) Basic Setup: Fix the velocity and height from
which the ball is served. The ball position on the X
and Z axis is randomized. Hence the only challenge
that the agent faces is to move towards the ball and
be able to hit it.

b) Randomized velocity: In this mode, the agent is
challenged with the ball being served with differ-
ent values for velocities from randomized X, Y,
Z positions. The agent has to learn to respond
accordingly.

c) Randomized Spin: In this setup, we have added
angular velocity and torque to the ball as it is
served from the serve bot. The angular velocity
and the torque is randomized for every time the
serve bot serves the ball. The inclusion of angular
velocity and torque results in the ball moving in
different directions after bouncing on the table.

The training is carried out by setting the behavior of the
single agent to “Default” in Unity so that no external action
is required to play the game. The serve bot is here considered
as the other agent for our training purpose. The trained
model, including SAC, PPO and curriculum learning, can be
embedded into Unity single agent to observe the performance
of the agent.

F. Analysis

In this section, we would discuss what we have observed
and thought on some of our training results.

1) RL models: SAC, PPO, M-POCA : Next Figure shows
the training result with different methods like PPO, SAC, MA-
POCA, etc. In self play as we know ELO is the most important
factor that dominates the performance of each model. In our
case the SAC model reaches the maximum ELO of 2352 after
training for 8M steps and continues to grow after. We have
used a very low learning rate of 0.0003 so that the model
can learn slowly but efficiently over a longer period of time.
In our experiments we have trained multiple SAC and PPO
models while varying the parameters and achieved the highest
performance on the SAC model having a batch size of 128,
learning rate of 0.0003, buffer initial steps of 0, ball bounce
of 1 and 2 neural net layers, running for 8M steps.

Fig. 7: PPO training Observation: Self Play/ELO graphs with
the hyper parameter combination:(a) High Buffer Size of 2048000,
low Learning Rate of 0.0003, (b) Low Buffer Size of 20480,
high Learning Rate of 0.01, epochs of 3, (c) Low Buffer Size of
20480, high Learning Rate of 0.01, epochs of 500, 10, 1000. 100.
SAC training Observation: Self Play/ELO graphs with the hyper
parameter combination:(d) Medium Batch Size of 512, low Learning
Rate of 0.0003, buffer initial steps of 1000,ball bounce of 1 with 2
layers (e) Medium Batch Size of 512, low Learning Rate of 0.0003,
buffer initial steps of 0,ball bounce of 0.9 with 3 layers (f) Low Batch
Size of 128, high Learning Rate varied between 0.01, 0.0003, 0.003,
buffer initial steps of 0 with 2 layers (g) High batch Size of 20480,
low Learning Rate of 0.0003,buffer initial steps of 1000 experimented
with 2 and 3 layers POCA training Observation: Self Play/ELO
graphs with the hyper parameter combination: (h)High Batch Size of
2048, low Learning Rate of 0.0003, swap steps of 1000 for Agent
A and 4000 for Agent B with 2 neural layers (i)High Batch Size of
2048, high Learning Rate of 0.003, swap steps of 1000 for Agent A
and 4000 for Agent B with 2 neural layers



Fig. 8: Single Agent Training result with different settings,
a) Fixed velocity, lines represent: PPO, SAC b) Random velocity,
lines represent: Different hyper-parameter combinations of SAC c)
Ball with spin reward. lines represent: Different hyper-parameter
combinations of SAC d) Curriculum learning : Reward Reduction

2) Single Agent Results: Figure above shows the training
result with different methods like PPO, SAC, Curriculum
Learning for the single agent training. In case of a single
agent,as we know cumulative reward(and not ELO) is the
most important factor that dominates the performance of each
model. In our case the (a) Fixed Velocity model reaches the
maximum cumulative reward of 1 in case of the SAC model
0.82 in case of the PPO model.This means that our final
model is almost always able to successfully hit the served
ball (b) Randomized Velocity model reaches the maximum
cumulative reward of 0.8 after getting trained for 6M steps,the
other two models crashed upon reaching 0.4 0.8 respectively.
We can say that the agent is capable of efficiently hitting the
ball coming at different velocities (c) Ball with Spin reward
model reaches the maximum cumulative reward of 0.9 after
getting trained for 8M, the other models displayed undesirable
results at 4M steps. This explains that our agent is capable of
recognizing the spin in the ball is able to hit it successfully
most of the times.(d) Curriculum Learning: Reward reduction
model reaches the maximum cumulative reward of 0.84 after
getting trained for 9M steps.On account of being trained under
Curriculum learning the agent is able to serve more powerful
returns. In our experiments we have trained multiple SAC,
PPO models with increased difficulty for the agent to hit the
ball while varying the parameters and achieved the highest
performance on the Curriculum Learning trained model.

3) Results with curriculum learning: We can see from the
above figure that with the reward reduction, the agent is able
to progressively learn and reach a high elo compared with
standard training procedure.

We can see from the that the agent is able to its performance,
but is as not stable and effective compared with reward
reduction.

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In summary, We present a semester-long Ping-Pong game
project built with inspirations of previous iterations of ml-
agents. Our efforts in training both a dual-agent and a single-
agent game have shown promise in delivering very capable
table-tennis agents that can serve and return similar to a

Fig. 9: Training result with reward reduction curriculum, left:
hyper-parameters, right: Elo-steps graph

Fig. 10: Training result with bat size curriculum, left: hyper-
parameters, right: Elo-steps graph

human player. Our models have produced strong performance
baselines in ELO and average rewards that should encourage
future explorations.

However, this projects have several limitations. First our
game is restricted to only x and y axis, thereby constraining
the agent’s ability to learn. Second, the lack of computational
resources slowed down the training process as each model had
to be tested for different hyper parameters. After training for
each hyper parameter set we had use the saved model to check
the performance of the game using Self play.

In the future, we plan to implement a custom support for
DQN, DDPG, and other models for Unity model conversion
for self-play in the game environment. We plan to utilize
additional computational resources to complete more episodes
and get better results.This will help us to test with different
models and hyper parameters to get the best model. We plan to
implement more up to date Reinforcement learning methods,
include the z axis movement for our models and also train our
agents for a doubles game.
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[13] K. Mülling and J. Peters, A Computational Model of Human Table Tennis
for Robot Application, 2009, p. 57.

[14] K. Muelling, J. Kober, and J. Peters, “Learning table tennis with a
mixture of motor primitives,” in 2010 10th IEEE-RAS International
Conference on Humanoid Robots, 2010, pp. 411–416.

[15] Y. Huang, D. Buchler, O. Koc, B. Schölkopf, and J. Peters,
“Jointly learning trajectory generation and hitting point prediction
in robot table tennis,” in 16th IEEE-RAS International Conference
on Humanoid Robots, Humanoids 2016, Cancun, Mexico, November
15-17, 2016. IEEE, 2016, pp. 650–655. [Online]. Available:
https://doi.org/10.1109/HUMANOIDS.2016.7803343

[16] R. Mahjourian, N. Jaitly, N. Lazic, S. Levine, and R. Miikkulainen,
“Hierarchical policy design for sample-efficient learning of robot

table tennis through self-play.” CoRR, vol. abs/1811.12927, 2018.
[Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1811.
html#abs-1811-12927

[17] K. Muelling, J. Kober, O. Kroemer, and J. Peters, “Learning to
select and generalize striking movements in robot table tennis,”
in AAAI Fall Symposium on Robots that Learn Interactively
from Human Teachers, 2012, pp. 263–279. [Online]. Available:
http://www.aaai.org/ocs/index.php/FSS/FSS12/paper/view/5602

[18] W. Gao, L. Graesser, K. Choromanski, X. Song, N. Lazic, P. Sanketi,
V. Sindhwani, and N. Jaitly, “Robotic table tennis with model-free
reinforcement learning,” 2020.

[19] J. Tebbe, L. Krauch, Y. Gao, and A. Zell, “Sample-efficient reinforce-
ment learning in robotic table tennis,” 2021.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016. [Online]. Available:
http://arxiv.org/abs/1509.02971

[21] M. Matsushima, T. Hashimoto, M. Takeuchi, and F. Miyazaki, “A learn-
ing approach to robotic table tennis,” IEEE Transactions on Robotics,
vol. 21, no. 4, pp. 767–771, 2005.
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